Resumen
We give further counterexamples to the conjectural construction of Bridgeland stability on threefolds due to Bayer, Macrì, and Toda. This includes smooth projective threefolds containing a divisor that contracts to a point, and Weierstraß elliptic Calabi–Yau threefolds. Furthermore, we show that if the original conjecture, or a minor modification of it, holds on a smooth projective threefold, then the space of stability conditions is non-empty on the blow up at an arbitrary point. More precisely, there are stability conditions on the blow up for which all skyscraper sheaves are semistable.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 1495-1510 |
Número de páginas | 16 |
Publicación | Mathematische Zeitschrift |
Volumen | 292 |
N.º | 3-4 |
DOI | |
Estado | Publicada - ago. 1 2019 |
Publicado de forma externa | Sí |
Nota bibliográfica
Publisher Copyright:© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
ASJC Scopus Subject Areas
- Matemáticas General