Bridgeland stability on blow ups and counterexamples

Cristian Martinez, Benjamin Schmidt

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

We give further counterexamples to the conjectural construction of Bridgeland stability on threefolds due to Bayer, Macrì, and Toda. This includes smooth projective threefolds containing a divisor that contracts to a point, and Weierstraß elliptic Calabi–Yau threefolds. Furthermore, we show that if the original conjecture, or a minor modification of it, holds on a smooth projective threefold, then the space of stability conditions is non-empty on the blow up at an arbitrary point. More precisely, there are stability conditions on the blow up for which all skyscraper sheaves are semistable.

Idioma originalInglés
Páginas (desde-hasta)1495-1510
Número de páginas16
PublicaciónMathematische Zeitschrift
Volumen292
N.º3-4
DOI
EstadoPublicada - ago. 1 2019
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

ASJC Scopus Subject Areas

  • Matemáticas General

Citar esto