Decoupling Conductivity and Solubility in Electrolytes Using Microemulsions

Jing Peng, Nelly M. Cantillo, Ye Xiao, K. Mc Kensie Nelms, Lacey S. Roberts, Gabriel Goenaga, Adam Imel, Brian Andrew Barth, Mark Dadmun, Douglas G. Hayes, Thomas Zawodzinski

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

Redox flow batteries have recently received considerable attention as possible large-scale energy storage devices, but their low energy density has inhibited widespread application. In this work, a novel strategy of decoupling conductivity and solubility of electrolytes using microemulsion is put forward to enhance ionic conduction of non-aqueous electrolytes, increase the selectivity of active species, improve the battery voltage, and eventually achieve the possibility of high energy density. We report a study of the electrochemistry of ferrocene in single phase Tween® 20/1-butanol/H2O/toluene microemulsion system at 20 °C. At low and intermediate surfactant to water weight ratios (<0.5/0.5), the voltammogram exhibits reversible electrochemical behavior, while at high surfactant levels the curves show lower levels of reversibility. The latter voltammograms have a form typically associated with high resistance in solution, consistent with a gradual transition in microstructure as surfactant levels increase. This change in structure is supported by correlations with conductivity results based on the literature. The voltammograms show little evidence of anomalies in double layer capacitance or electrode "blocking"by droplets, suggesting that the electron transfer is indeed occurring in a facile manner between the electrode and the ferrocene inside the oil phase.

Idioma originalInglés
Número de artículo080502
PublicaciónJournal of the Electrochemical Society
Volumen168
N.º8
DOI
EstadoPublicada - ago. 2021
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.

ASJC Scopus Subject Areas

  • Materiales electrónicos, ópticos y magnéticos
  • Energías renovables, sostenibilidad y medio ambiente
  • Física de la materia condensada
  • Superficies, recubrimientos y láminas
  • Electroquímica
  • Química de los materiales

Citar esto